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Abstract

The wel-posedness of the Cauchy problems to the Korteweg-de Vries-Benjamin-Ono eqyation and

Hirota equation is
. A 1
considered. For the Korteweg-de Vries-Benjamin-Ono equation, bcal result is established for datain H°(R) Es} —| - Moreoves the

8

global wellposedness for data in L2(R) can be obtained. For Hirota equation, bcal result is established for initial data in H*| s= = -

In addition, the local solution is proved to be global in Hs(s==1) if the initial data are in H5(s=1) by energy inequality and the generaliza-

tion of the trilinear estim ates associated with the Fourier restriction norm method

Keywords:

1 Introduction

We investigate the existence and uniqueness of
the solutions to the Cauchy problems of the following
nonlinear dispersive equations

AQut oK Fa)+ BIut A =0, (D

O —Haazxu + Baiu +vo.(lu Puy=0 @

respectively with the initial value

ulx, 0= ¢(x) € H, 3
where x € R, tER. B, o, 7 are real constants.
P. V. denotes the Cauchy principal value, .Z4denotes
the Hilbert transform

)= P. V.H»“‘Lyﬂdy.

Korteweg-de Vries-Benjamin-Ono equation mod-
els the undirectional propagation of long waves in a
tw o-fluid system, where the lower fluid with greater
density is infinitely deep and the interface is subject to
capillarity. It was derived by Benjamin in the study
on gravity-capillary surface waves of solitary type on
deep water. Several efforts are devoted to study of
existence, stability and asymptotic of solitary waves
solutions of (1) ~(3), see for instance in Refs.[ 1,
2] . Linares ) showed that there exist unique local

and global solutions for the Cauchy problem of (1) ~

Korteweg de Vries-Benjamin-Ono equation. Hirota equation, the Fourier restriction norm low regularity data.

(3) for initial data in L* with constant coefficients
a°f> 0. In this paper, we are only interested in the
study of well-posedness for the Cauchy problem with
low regularity data here. We will prove that the
Cauchy prohlem of (1) ~ (3) is locally well-posed in

H'| — é—és and globally well-posed in L? without

the condition @°> 0 by using the Fourier restriction
norm method and the contraction mapping principle.
The Fourier restriction norm method was first intro-
duced by Bourgain'¥ to study the KdV and nonlinear
Schrodinger equations in the periodic case. It was
simplified by Kenig, Ponce and Vega in Refs.[5, 6] .

We follow their ideas to prove our results.

Hirota equation is a ty pical model of mathemati-
cal physics, which encom passes the well-known non-
linear Schriodinger equation and the modified KdV e-
quation, and especially contains the nonlinear deriva-
tive Schro dinger equa’[ion[7~ Lots of work con-
cems the local and global existence and uniqueness of
solutions of the equations. In Ref.[ 10], Guo and
Tan obtained the global smooth solution of the
Cauchy problem of (2) ~(3) by the energy method.
In Ref. [ 11],

Laugey obtained the local well-posed-
ness in H [s>% and global well-posedness in
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H'(s=2, s=1) for the Cauchy problem of (2) ~
(3). Therefore, we only consider global well-posed-
ness of Cauchy problem of (2) ~ (3)in H'(1<Cs<<2)

here.

ness of Cauchy problem of (2) ~ (3) in H' s}l

4

by the Fourier restriction norm method. Moreover if
o 1

the initial data $(x )& H ', then we can prove that

there exists a unique local solution to the Cauchy

In this paper;, we will prove the local w Tposej

problem of (2) ~ (3) and its a priori estimates.
Therefore, we can extend the local solution to be
global in H'. For initial data ¢ (x) € H (1<< s<<2)
CH', first we can obtain that there exists a unique
local solution u € C((0, To); H'), and the solution
satisfies |l u |l #'<C C by the energy inequality. Us-
ing the properties of the solution and the generaliza-
tion of trilinear estimates, we can prove that the
above solution belongs to C ((0, To0); H) (1<s<
2). In order to extend the solution of (2) ~ (3) to
any time 72> 0in H’, we make the iteration scheme
as follows: take u (To) as the initial data, and get
the local solution u € C((Tqo, T1); H"). Similarly as
above, the solution isin C(( Ty, T1); H) (< s<K

To

2). In fact we can continue the above process of
steps by a priori estimate |l u Il ,1<C C.

Both of the equations have similar properties be-

cause Korteweg-de Vries-Benjamin-Ono equation and
. . . . 3

Hirota equation have the dispersive term 9 . There-

fore, we can solve them by the same method.

To study the above problem, we use the integral

equivalent formulations
t

qu(ﬁ@—Lsu—/nmﬂmA

1 P 1(BE— of| &)
where S (t) = % e

= EHEE . .
Tie B0 % are the unitary operators associated

to the linear equations respectively. F (x, t) =
& (uP) or & ul?u). For simplicity, denote $(&)
=B ol &, or $(5)= oS+ 5

Foor S (t) =

We introduce the notation of Bourgain’ space.
For s, bE€R, we define the space Xj,  as the com-

. . 2 .
pletion of the Schwartz function space on R™ with re-
spect to the norm

[l u ||Xs.b: NS Oull
= 1Y {(t— $(Yom ”LZLZ:

(Y= 1+ I D.

Denote (T, §)=.7u by the Fourier transform
in t and x of u and . %) u by the Fourier transform

in the () variable. Let Y€ C, (R) with $=1 on
1 1 t
[_59 E] and supp 9 — 1, 1]. $(1)= {_8 .

For the Korteweg-de V ries-Benjamin-Ono equa-
tion, we have the following theorems.

Theorem 1. Let — égs, é—< << % Then

there exists a constant 72> 0, Cauchy problem of (1)
~(3) admits a unique local solution u (x, t) € C
(0, T); H Xsp with $€ H'. Moreover, given
t €0, T), the mapping ¢—>u (¢) is Lipschitz con-
tinuous from H' to C((0, T); H).

The smooth solution of Cauchy problem of (1) ~
(3) is proved to satisfy the L? conservation law, so is
the solution to the Cauchy problem of (1) ~ (3) for
5==0. Then we have the global well-posedness of
Cauchy problem of (1) ~ (3) for datain L7

Theorem 2. For s=0, the solution obtained in
Theorem 1 can be extended for any 7>0.

For the Hirota equation, we have

Theorem 3. lLet S>%, %< 8 % Then there

exists a constant 7> 0, such that the Cauchy prob-
lem of (2) ~ (3) admits a unique local solution u (x,
HECU0, T); H))N Xs. » with € H*. Moreover,
given t € (0, T), the map ¢—>u (¢) is Lipschitz con-
tinuous from H* to C((0, T); H').

Theorem 4. Let s—=1, the Cauchy problem of
(2)~ (3) is global well-posed in H with initial data
YEH (s=1).

Indeed one can obtain local well-posedness of
Cauchy problems of (1) ~(3) and (2) ~ (3) by the
Picard iteration method provided that

o Cuyuz) HXS.H < C llu ||Xsb 7 ||XM,

Y

1O Cuyuaus) Il y

s b—1
< C llu; ||Xb||u2 ||Xb||u3 HX.b’ 5
hold for some 5> % We only need to prove the mul-

ti-linear estimates (4) and (5) to obtain the local
well-posedness of, Cauchy problems., Therefore, we
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need the following preliminary estimates.

2 Preliminary estimates

In this section, we shall deduce several esti-

mates. Let us use the notations
ixé

PNf= L e (8)d§,

_ I)CE S E

PNf JEKNe ( )d ’

5 g 2 L
[ee] q p
||f || Lt — [J‘U)[Jm ‘f(x, t) |th] d_x] .

70 = W0 0

£(& )
(1+lz— & h°

a is a constant, which depends on o, f.

.,‘?Fp(e, T)=

Lemma 1."'"? The group { S(t)}i:; satisfies

ISPl s Nl e, (6)
Lemma 2.
ID.SCoPP Il -2 Tells (D
||D;‘1T5<t>P“<p b < lhele ®
||D6P2“S(t)(P e Wl ()

Remark. In the proof of Lemma 2, we intro-
duce the operator P" to eliminate the nonzero singular
point of phase function ¢ (§). We mainly refer to

Ref.[ 13] .

YN>0
< C ||f ||L§L2.

Lemma 3. If 0> L,
I ot I,

Lemma 4. () If 0> % then
1Fe sy < ClE T2

Gi) I p>l
||Fp || s 3

, then
clly ||L§L2t

Lemma 5. (i) Let P>%with 0€[0, 1] . Then

0 a
Il D.P*Fy | s < Cliflp

(ii) Let 0> %, then

clifil,

&t

_ 1
4 p2a )
1D *P*F, Il o, <
X t

Giv) If > %» then

1
8p2
D P Fo Il s s << CU £ 20
x ot ST

Remark. We can obtain Lemmas 3, 4 and 5 by
Lemmas 1 and 2.

Lemma 6. We assume that functions f5 f1,
/2 f3 belong to schwartz space on R”.

&= €I+EQ+E3; t:rl+r2+r3 fA(E’ T)ﬁ (EU Tl)
cﬁ(§29 Tz)fé(%, 3)d 0
= Jff1f2f3(x, t)dxdt.

Lgﬁrgi' =t T /1 g’ O/ (El’ Tl)f2(829 T)d o

= Jfflfzoc, Hdxdt.

Lemma 7. Let s €R, é{b<b/<1, 0 &<
1. Then we have

SO, <cd el

t
H I t)JOS(t — OF(0dt

X.s'. b

b
<c¢ |F lx, -

t
H %(t)J S(t— DF(odt

0

L H
t X

< CB‘Z "IF IIXH,

IsCOF Iy <cd iR,

s b1

3 Local results

In this section, we will obtain (4) and (5), and
we have the following theorems.

Theorem 5. Let 2< b be close enough to é

For 5<b and s=—
Il o Curu) Il y
s b1

~» we have

8

<clully Nully .
s b s b
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5 '

Theorem 6. If s}%, < < g b >

1
27

B =

then
1o Curusus) x|

<Cluilly MNuslly Muslly .
s.b sb 5. b

Remark. In the proof of Theorems 5 and 6, we
introduce the operator P, choose appropriate N, we

have
DS (OPYPI << C eIl 2,

x

N
IS (OPYell o< cliell 1

which are called global and local smoothing effects of
dispersive equations respectively. Therefore, we will
divide the Bourgain’ space into two parts (| <N
and | €] = N). We use the above global and local
smoothing effects to prove the result in | El=N part
(we mainly use Lemma 5 to prove it), use Strichartz
estimate to prove it in | gl <N part (we mainly use
Lemmas 3 and 4 to prove it).

Next, we give the outline proofs of Theorems 1
and 3. For $€ H' we define the operator
D(u) = H(OHSDOP

t
- «h(r)Josu— ) w(HF (Dl
and the set

B={u€ Xop * llu ||Xv~b< C eIl ).

In order to show that Pis a contraction mapping
on .% we first prove

P(pH Cx

We first consider linear estimates (Lemma 7)

1
IS (el <cC® "l

"t
H Ll’a(t)JOS(t (HF Dt

X
s b

Ly
<c® IF HX:.H’

LH

tox

"t
H %(t)JOS(t— tOF(tHdr

1
5 b
<c¥ "IF Iy

Next we consider nonlinear estimates ( Theo-

rems 5 and 6).

For the Korteweg-de Vries-Benjamin-Ono equa-
tion, we have

1PG Iy <INy " lu il

<cllell +c8 1ol lully .
s b
Therefores if fix Osuch that C8" 7 Il ¢ ||Hl\<%,
then we have
oH CA
Let u, v€.% inan analogous way to above, we ob-

tain

1O — @) Iy <+ llu—v Il

b s b

Therefore, P is a contraction mapping on .2
There exists a unique fixed point which solves the

Cauchy problem for 7= Q

For the Hirota equation, we have

1ol <c el +cb *llu I
s b . s

<cllell +c8 "ol llully, ,

s b

therefore, if we fix Osuch that Cg’,ib Il ¢ ||3f<%9

then

Q(H CA
Similarly with the Korteweg-de Vries-Benjamin-Ono
equation, © is a contraction mapping on .Z There
exists a unique fixed point which solves the Cauchy

problem for 7<< Q

4 Global solution in A’ (1<_s<_2) of the Hi-
rota equation

In this section, we have the following general-
ization of the trilinear estimate of the Hirota equa-

tion.
1 2 '~ 1
Lemma 8. Let s=0, 2< b<< 3 b > X
Then we have
Il o (u3) |l
uruz u3 Xs-b*l
< C Il ||Xs p Il 4y HXS p Il 25 “Xs g
1 2 3"
1o
Il w2 O Cus) “X‘y.;ﬂ
< C Il ||Xs p Il 4y HXS p Il 25 “Xs g
1 2 3"
anp

where we choose nomnegative different numbers
(s15 $25 83) to satisfy the following cases:

s1its3=2b—1, sots3=2b—1, (12)
s—sm<<l, s—s<1, (13)
1+s1=82, 1+ s0=8 14)
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S1+S3>%y S2‘|‘S3>%, as
S = 53 (16)
s—min{l— b, 52} < s1t+s3+1—2b AT

I—min{l— b, 5o} —s3<< 51— s T2(1— b).
18

In facts we choose I<ls=s5312, 1<{s1, 552,
then (10) and (11) hold.

Lemma 9. If initial data $€ H', then Cauchy
problem of (2) ~ (3) is local well-posed. M oreover,
the solution u satisfies llu Il ()<CC.

Remark. We use generalization of the trilinear
estimate to make the local solution # of the Cauchy
problem of (2) ~(3) global in H* (I<{ s<2) for data
in H' by energy inequality of solution u in H'.
Therefora we can obtain the solution u & C ((0,
c0); H') for initial data P€ H* (1< s<2).
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